Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
J Clin Med ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38541797

RESUMO

Background: The prevalence of COVID-19 breakthrough infections in healthcare workers (HCWs) remains an issue of concern. This study examines the different characteristics associated with breakthrough infections in HCWs. Methods: From the total participants in the TüSeRe:exact study (n = 1046), we specifically included study participants who had received three vaccinations and were not infected prior to the third vaccination. Participants were invited to complete an online questionnaire, which included inquiries about any breakthrough infections they might have experienced. Univariate Cox regression analysis was used to investigate the association between participant characteristics and breakthrough infections. Results: Among 629 HCWs (497 female and 132 male), 241 (38%) experienced breakthrough infections during the follow-up period. The frequency of breakthrough infections was 39.2% (195/497) among female participants and 34.8% (46/132) among male participants (p = 0.357). The Cox regression model adjusted for age and sex showed that participants with cardiovascular disease (hazard ratio (95%CI) = 0.621 (0.392-0.985); p = 0.043) and those taking antihypertensives (hazard ratio (95%CI) = 0.551 (0.331-0.915); p = 0.021) had a significantly lower hazard ratio for breakthrough infections. The use of analgesics after the first vaccine (hazard ratio (95%CI) = 1.343 (1.025-1.759); p = 0.032) was associated with an increased risk of breakthrough infections. Conclusions: These findings can inform targeted preventive measures and risk management strategies to protect frontline workers and maintain a resilient healthcare system during the ongoing pandemic.

2.
Lab Chip ; 24(7): 2080-2093, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38441218

RESUMO

Pancreatic in vitro research is of major importance to advance mechanistic understanding and development of treatment options for diseases such as diabetes mellitus. We present a thermoplastic-based microphysiological system aiming to model the complex microphysiological structure and function of the endocrine pancreas with concurrent real-time read-out capabilities. The specifically tailored platform enables self-guided trapping of single islets at defined locations: ß-cells are assembled to pseudo-islets and injected into the tissue chamber using hydrostatic pressure-driven flow. The pseudo-islets can further be embedded in an ECM-like hydrogel mimicking the native microenvironment of pancreatic islets in vivo. Non-invasive real-time monitoring of the oxygen levels on-chip is realized by the integration of luminescence-based optical sensors to the platform. To monitor insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, an automated cycling of different glucose conditions is implemented. The model's response to glucose stimulation can be monitored via offline analysis of insulin secretion and via specific changes in oxygen consumption due to higher metabolic activity of pseudo-islets at high glucose levels. To demonstrate applicability for drug testing, the effects of antidiabetic medications are assessed and changes in dynamic insulin secretion are observed in line with the respective mechanism of action. Finally, by integrating human pancreatic islet microtissues, we highlight the flexibility of the platform and demonstrate the preservation of long-term functionality of human endocrine pancreatic tissue.


Assuntos
Insulina , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Pâncreas , Glucose/análise , Secreção de Insulina
3.
Front Immunol ; 15: 1357340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504975

RESUMO

In the context of multimodal treatments for abdominal cancer, including procedures such as cytoreductive surgery and intraperitoneal chemotherapy, recurrence rates remain high, and long-term survival benefits are uncertain due to post-operative complications. Notably, treatment-limiting side effects often arise from an uncontrolled activation of the immune system, particularly peritoneally localized macrophages, leading to massive cytokine secretion and phenotype changes. Exploring alternatives, an increasing number of studies investigated the potential of plasma-activated liquids (PAL) for adjuvant peritoneal cancer treatment, aiming to mitigate side effects, preserve healthy tissue, and reduce cytotoxicity towards non-cancer cells. To assess the non-toxicity of PAL, we isolated primary human macrophages from the peritoneum and subjected them to PAL exposure. Employing an extensive methodological spectrum, including flow cytometry, Raman microspectroscopy, and DigiWest protein analysis, we observed a pronounced resistance of macrophages towards PAL. This resistance was characterized by an upregulation of proliferation and anti-oxidative pathways, countering PAL-derived oxidative stress-induced cell death. The observed cellular effects of PAL treatment on human tissue-resident peritoneal macrophages unveil a potential avenue for PAL-derived immunomodulatory effects within the human peritoneal cavity. Our findings contribute to understanding the intricate interplay between PAL and macrophages, shedding light on the promising prospects for PAL in the adjuvant treatment of peritoneal cancer.


Assuntos
Neoplasias Peritoneais , Peritônio , Humanos , Peritônio/metabolismo , Macrófagos Peritoneais , Macrófagos , Cavidade Peritoneal , Neoplasias Peritoneais/metabolismo , Estresse Oxidativo
4.
J Exp Clin Cancer Res ; 43(1): 77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475864

RESUMO

BACKGROUND: The DNA damage response (DDR) is a physiological network preventing malignant transformation, e.g. by halting cell cycle progression upon DNA damage detection and promoting DNA repair. Glioblastoma are incurable primary tumors of the nervous system and DDR dysregulation contributes to acquired treatment resistance. Therefore, DDR targeting is a promising therapeutic anti-glioma strategy. Here, we investigated Ataxia telangiectasia and Rad3 related (ATR) inhibition (ATRi) and functionally-instructed combination therapies involving ATRi in experimental glioma. METHODS: We used acute cytotoxicity to identify treatment efficacy as well as RNAseq and DigiWest protein profiling to characterize ATRi-induced modulations within the molecular network in glioma cells. Genome-wide CRISPR/Cas9 functional genomic screens and subsequent validation with functionally-instructed compounds and selected shRNA-based silencing were employed to discover and investigate molecular targets modifying response to ATRi in glioma cell lines in vitro, in primary cultures ex vivo and in zebrafish and murine models in vivo. RESULTS: ATRi monotherapy displays anti-glioma efficacy in vitro and ex vivo and modulates the molecular network. We discovered molecular targets by genome-wide CRISPR/Cas9 loss-of-function and activation screens that enhance therapeutic ATRi effects. We validated selected druggable targets by a customized drug library and functional assays in vitro, ex vivo and in vivo. CONCLUSION: In conclusion, our study leads to the identification of novel combination therapies involving ATRi that could inform future preclinical studies and early phase clinical trials.


Assuntos
Glioma , Peixe-Zebra , Camundongos , Animais , Linhagem Celular Tumoral , Reparo do DNA , Dano ao DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
5.
Sci Transl Med ; 16(728): eadg3840, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170791

RESUMO

The extracellular matrix (ECM) is essential for cell support during homeostasis and plays a critical role in cancer. Although research often concentrates on the tumor's cellular aspect, attention is growing for the importance of the cancer-associated ECM. Biochemical and physical ECM signals affect tumor formation, invasion, metastasis, and therapy resistance. Examining the tumor microenvironment uncovers intricate ECM dysregulation and interactions with cancer and stromal cells. Anticancer therapies targeting ECM sensors and remodelers, including integrins and matrix metalloproteinases, and ECM-remodeling cells, have seen limited success. This review explores the ECM's role in cancer and discusses potential therapeutic strategies for cell-ECM interactions.


Assuntos
Neoplasias , Humanos , Fenômenos Biomecânicos , Neoplasias/patologia , Matriz Extracelular , Integrinas , Microambiente Tumoral
8.
Biofabrication ; 16(1)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769669

RESUMO

The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis (IA) in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated IA proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established.


Assuntos
Bioimpressão , Humanos , Bioimpressão/métodos , Reprodutibilidade dos Testes , Tecidos Suporte/química , Materiais Biocompatíveis , Impressão Tridimensional , Engenharia Tecidual/métodos
9.
Nat Commun ; 14(1): 5799, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726278

RESUMO

Spatial transcriptomics of histological sections have revolutionized research in life sciences and enabled unprecedented insights into genetic processes involved in tissue reorganization. However, in contrast to genomic analysis, the actual biomolecular composition of the sample has fallen behind, leaving a gap of potentially highly valuable information. Raman microspectroscopy provides untargeted spatiomolecular information at high resolution, capable of filling this gap. In this study we demonstrate spatially resolved Raman "spectromics" to reveal homogeneity, heterogeneity and dynamics of cell matrix on molecular levels by repurposing state-of-the-art bioinformatic analysis tools commonly used for transcriptomic analyses. By exploring sections of murine myocardial infarction and cardiac hypertrophy, we identify myocardial subclusters when spatially approaching the pathology, and define the surrounding metabolic and cellular (immune-) landscape. Our innovative, label-free, non-invasive "spectromics" approach could therefore open perspectives for a profound characterization of histological samples, while additionally allowing the combination with consecutive downstream analyses of the very same specimen.


Assuntos
Disciplinas das Ciências Biológicas , Análise Espectral Raman , Animais , Camundongos , Genômica , Biologia Computacional , Citosol
10.
J Exp Clin Cancer Res ; 42(1): 210, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596623

RESUMO

Despite tremendous progress in deciphering breast cancer at the genomic level, the pronounced intra- and intertumoral heterogeneity remains a major obstacle to the advancement of novel and more effective treatment approaches. Frequent treatment failure and the development of treatment resistance highlight the need for patient-derived tumor models that reflect the individual tumors of breast cancer patients and allow a comprehensive analyses and parallel functional validation of individualized and therapeutically targetable vulnerabilities in protein signal transduction pathways. Here, we introduce the generation and application of breast cancer patient-derived 3D microtumors (BC-PDMs). Residual fresh tumor tissue specimens were collected from n = 102 patients diagnosed with breast cancer and subjected to BC-PDM isolation. BC-PDMs retained histopathological characteristics, and extracellular matrix (ECM) components together with key protein signaling pathway signatures of the corresponding primary tumor tissue. Accordingly, BC-PDMs reflect the inter- and intratumoral heterogeneity of breast cancer and its key signal transduction properties. DigiWest®-based protein expression profiling of identified treatment responder and non-responder BC-PDMs enabled the identification of potential resistance and sensitivity markers of individual drug treatments, including markers previously associated with treatment response and yet undescribed proteins. The combination of individualized drug testing with comprehensive protein profiling analyses of BC-PDMs may provide a valuable complement for personalized treatment stratification and response prediction for breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Mama , Genômica , Transdução de Sinais
11.
Am J Physiol Cell Physiol ; 325(1): C332-C343, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335025

RESUMO

Cardiomyopathies are associated with fibrotic remodeling of the heart, which is characterized by the excessive accumulation of collagen type I (COL I) due to chronic inflammation and suspected epigenetic influences. Despite the severity and high mortality rate of cardiac fibrosis, current treatment options are often inadequate, underscoring the importance of gaining a deeper understanding of the disease's underlying molecular and cellular mechanisms. In this study, the extracellular matrix (ECM) and nuclei in fibrotic areas of different cardiomyopathies were molecularly characterized by Raman microspectroscopy and imaging and compared with the control myocardium. Patient samples were obtained from heart tissue affected by ischemia, hypertrophy, and dilated cardiomyopathy and analyzed for fibrosis through conventional histology and marker-independent Raman microspectroscopy (RMS). Prominent differences between control myocardium and cardiomyopathies were revealed by spectral deconvolution of COL I Raman spectra. Statistically significant differences were identified in the amide I region of spectral subpeak at 1,608 cm-1, which is a representative endogenous marker for alterations in the structural conformation of COL I fibers. Moreover, epigenetic 5mC DNA modification was identified within cell nuclei by multivariate analysis. A statistically significant increase in signal intensities of spectral features indicative of DNA methylation was detected in cardiomyopathies in accordance with immunofluorescence 5mC staining. Overall, RMS is a versatile technology in the discrimination of cardiomyopathies based on molecular evaluation of COL I and nuclei while providing insights into the pathogenesis of the diseases.NEW & NOTEWORTHY Cardiomyopathies are associated with severe fibrotic remodeling of the heart, which is characterized by the excessive accumulation of collagen type I (COL I). In this study, we used marker-independent Raman microspectroscopy (RMS) to gain a deeper understanding of the disease's underlying molecular and cellular mechanisms.


Assuntos
Cardiomiopatias , Metilação de DNA , Humanos , Colágeno Tipo I/metabolismo , Cardiomiopatias/patologia , Epigênese Genética , Fibrose
12.
Mater Today Bio ; 21: 100696, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37361552

RESUMO

Understanding the immune system's foreign body response (FBR) is essential when developing and validating a biomaterial. Macrophage activation and proliferation are critical events in FBR that can determine the material's biocompatibility and fate in vivo. In this study, two different macro-encapsulation pouches intended for pancreatic islet transplantation were implanted into streptozotocin-induced diabetes rat models for 15 days. Post-explantation, the fibrotic capsules were analyzed by standard immunohistochemistry as well as non-invasive Raman microspectroscopy to determine the degree of FBR induced by both materials. The potential of Raman microspectroscopy to discern different processes of FBR was investigated and it was shown that Raman microspectroscopy is capable of targeting ECM components of the fibrotic capsule as well as pro and anti-inflammatory macrophage activation states, in a molecular-sensitive and marker-independent manner. In combination with multivariate analysis, spectral shifts reflecting conformational differences in Col I were identified and allowed to discriminate fibrotic and native interstitial connective tissue fibers. Moreover, spectral signatures retrieved from nuclei demonstrated changes in methylation states of nucleic acids in M1 and M2 phenotypes, relevant as indicator for fibrosis progression. This study could successfully implement Raman microspectroscopy as complementary tool to study in vivo immune-compatibility providing insightful information of FBR of biomaterials and medical devices, post-implantation.

13.
Acta Biomater ; 162: 278-291, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931422

RESUMO

Fibrosis is a consequence of the pathological remodeling of extracellular matrix (ECM) structures in the connective tissue of an organ. It is often caused by chronic inflammation, which over time, progressively leads to an excess deposition of collagen type I (COL I) that replaces healthy tissue structures, in many cases leaving a stiff scar. Increasing fibrosis can lead to organ failure and death; therefore, developing methods that potentially allow real-time monitoring of early onset or progression of fibrosis are highly valuable. In this study, the ECM structures of diseased and healthy human tissue from multiple organs were investigated for the presence of fibrosis using routine histology and marker-independent Raman microspectroscopy and Raman imaging. Spectral deconvolution of COL I Raman spectra allowed the discrimination of fibrotic and non-fibrotic COL I fibers. Statistically significant differences were identified in the amide I region of the spectral subpeak at 1608 cm-1, which was deemed to be representative for structural changes in COL I fibers in all examined fibrotic tissues. Raman spectroscopy-based methods in combination with this newly discovered spectroscopic biomarker potentially offer a diagnostic approach to non-invasively track and monitor the progression of fibrosis. STATEMENT OF SIGNIFICANCE: Current diagnosis of fibrosis still relies on histopathological examination with invasive biopsy procedures. Although, several non-invasive imaging techniques such as positron emission tomography, single-photon emission computed tomography and second harmonic generation are gradually employed in preclinical or clinical studies, these techniques are limited in spatial resolution and the morphological interpretation highly relies on individual experience and knowledge. In this study, we propose a non-destructive technique, Raman microspectroscopy, to discriminate fibrotic changes of collagen type I based on a molecular biomarker. The changes of the secondary structure of collagen type I can be identified by spectral deconvolution, which potentially can provide an automatic diagnosis for fibrotic tissues in the clinical applicaion.


Assuntos
Colágeno Tipo I , Matriz Extracelular , Humanos , Análise Espectral Raman/métodos , Cicatriz , Biomarcadores
14.
J Mater Chem B ; 11(10): 2207-2218, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36786208

RESUMO

Electrospinning has become a well-established method for creating nanofibrous meshes for tissue-engineering applications. The incorporation of natural extracellular components, such as electrospun pure collagen nanofibers, has proven to be particularly challenging, as electrospun collagen nanofibers do not constitute native collagen fibers anymore. In this study, we show that this detrimental effect is not only limited to fluorinated solvents, as previously thought. Rat tail collagen was dissolved in acetic acid and ethanol and electrospun at various temperatures. Electrospun collagen mats were analyzed using circular dichroism, enzymatic digestion, SDS-PAGE, western blotting, and Raman spectroscopy and compared to heat-denaturated and electrospun collagen in HFIP. Our data suggest that even non-fluorinated electrospinning solvents, such as acid-based solvents, do not yield structurally intact fibers. Interestingly, neither epithelial cells nor fibroblasts displayed a different cellular response to electrospun collagen compared to collagen-coated polyurethane scaffolds in F-actin staining and metabolic analysis using fluorescent lifetime imaging. The disruption of the structural integrity of collagen might therefore be underestimated based on the cell-material interactions alone. These observations expose the larger than anticipated vulnerability of collagen in the electrospinning process. Based on these findings, the influence of the electrospinning process on the distinct biochemical properties of collagen should always be considered, when ECM-mimicking fibrous constructs are manufactured.


Assuntos
Colágeno , Engenharia Tecidual , Ratos , Animais , Solventes/química , Colágeno/química , Engenharia Tecidual/métodos , Poliuretanos , Células Epiteliais
15.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835168

RESUMO

Synthetic bone substitute materials (BSMs) are becoming the general trend, replacing autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As the main component of bone matrix, collagen type I has played a critical role in the construction of ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research, including the exploration of various collagen types, structures, and sources, the optimization of preparation techniques, modification technologies, and the manufacture of various collagen-based materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive activity of collagen-based materials caused inefficient bone replacement and limited their translation into clinical reality. In the area of BTE, so far, attempts have focused on the preparation of collagen-based biomimetic BSMs, along with other inorganic materials and bioactive substances. By reviewing the approved products on the market, this manuscript updates the latest applications of collagen-based materials in bone regeneration and highlights the potential for further development in the field of BTE over the next ten years.


Assuntos
Materiais Biomiméticos , Substitutos Ósseos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Osso e Ossos , Colágeno/química , Materiais Biomiméticos/química , Regeneração Óssea , Substitutos Ósseos/química , Materiais Biocompatíveis/química
16.
Matrix Biol ; 115: 160-183, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592738

RESUMO

Transplantation of islets of Langerhans is a promising alternative treatment strategy in severe cases of type 1 diabetes mellitus; however, the success rate is limited by the survival rate of the cells post-transplantation. Restoration of the native pancreatic niche during transplantation potentially can help to improve cell viability and function. Here, we assessed for the first time the regulatory role of the small leucine-rich proteoglycan decorin (DCN) in insulin secretion in human ß-cells, and its impact on pancreatic extracellular matrix (ECM) protein expression in vitro. In depth analyses utilizing next-generation sequencing as well as Raman microspectroscopy and Raman imaging identified pathways related to glucose metabolism to be upregulated in DCN-treated cells, including oxidative phosphorylation within the mitochondria as well as proteins and lipids of the endoplasmic reticulum. We further showed the effectiveness of DCN in a transplantation setting by treating collagen type 1-encapsulated ß-cell-containing pseudo-islets with DCN. Taken together, in this study, we demonstrate the potential of DCN to improve the function of insulin-secreting ß-cells while reducing the expression of ECM proteins affiliated with fibrotic capsule formation, making DCN a highly promising therapeutic agent for islet transplantation.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Decorina/genética , Decorina/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo
17.
Clin Infect Dis ; 76(3): e240-e249, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717657

RESUMO

BACKGROUND: The rapid emergence of the Omicron variant and its large number of mutations led to its classification as a variant of concern (VOC) by the World Health Organization. Subsequently, Omicron evolved into distinct sublineages (eg, BA.1 and BA.2), which currently represent the majority of global infections. Initial studies of the neutralizing response toward BA.1 in convalescent and vaccinated individuals showed a substantial reduction. METHODS: We assessed antibody (immunoglobulin G [IgG]) binding, ACE2 (angiotensin-converting enzyme 2) binding inhibition, and IgG binding dynamics for the Omicron BA.1 and BA.2 variants compared to a panel of VOCs/variants of interest, in a large cohort (N = 352) of convalescent, vaccinated, and infected and subsequently vaccinated individuals. RESULTS: While Omicron was capable of efficiently binding to ACE2, antibodies elicited by infection or immunization showed reduced binding capacities and ACE2 binding inhibition compared to wild type. Whereas BA.1 exhibited less IgG binding compared to BA.2, BA.2 showed reduced inhibition of ACE2 binding. Among vaccinated samples, antibody binding to Omicron only improved after administration of a third dose. CONCLUSIONS: Omicron BA.1 and BA.2 can still efficiently bind to ACE2, while vaccine/infection-derived antibodies can bind to Omicron. The extent of the mutations within both variants prevents a strong inhibitory binding response. As a result, both Omicron variants are able to evade control by preexisting antibodies.


Assuntos
Enzima de Conversão de Angiotensina 2 , Imunoglobulina G , Humanos , Imunização , Mutação , Complicações Pós-Operatórias , Anticorpos Antivirais , Anticorpos Neutralizantes
18.
Stem Cell Res ; 66: 102988, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528016

RESUMO

Invasive lobular carcinoma (ILC) is a distinct type of breast cancer and is accounting up to 10-15 % of all mammary carcinomas showing a pronounced increase in incidence rates over the last two decades. We generated three induced pluripotent stem cell (iPSC) lines from CD34+ progenitor cells isolated from a mammary carcinoma patient diagnosed with ILC. Here, we describe the characterization of the iPSCs by array-based comparative genomic hybridization (array CGH), immunocytochemistry, flow cytometry, reverse transcriptase polymerase chain reaction and directed in vitro differentiation. The iPSC lines will find application in the field of breast cancer research.


Assuntos
Neoplasias da Mama , Carcinoma Lobular , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Idoso de 80 Anos ou mais , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Hibridização Genômica Comparativa , Neoplasias da Mama/patologia , Diferenciação Celular/genética
19.
ACS Omega ; 7(44): 39772-39781, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385898

RESUMO

Conventional synthesis routes for thermoplastic polyurethanes (TPUs) still require the use of isocyanates and tin-based catalysts, which pose considerable safety and environmental hazards. To reduce both the ecological footprint and human health dangers for nonwoven TPU scaffolds, it is key to establish a green synthesis route, which eliminates the use of these toxic compounds and results in biocompatible TPUs with facile processability. In this study, we developed high-molecular-weight nonisocyanate polyurethanes (NIPUs) through transurethanization of 1,6-hexanedicarbamate with polycarbonate diols (PCDLs). Various molecular weights of PCDL were employed to maximize the molecular weight of NIPUs and consequently facilitate their electrospinnability. The synthesized NIPUs were characterized by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry. The highest achieved molecular weight (M w) was 58,600 g/mol. The NIPUs were consecutively electrospun into fibrous scaffolds with fiber diameters in the submicron range, as shown by scanning electron microscopy (SEM). To assess the suitability of electrospun NIPU mats as a possible biomimetic load-bearing pericardial substitute in cardiac tissue engineering, their cytotoxicity was investigated in vitro using primary human fibroblasts and a human epithelial cell line. The bare NIPU mats did not need further biofunctionalization to enhance cell adhesion, as it was not outperformed by collagen-functionalized NIPU mats and hence showed that the NIPU mats possess a great potential for use in biomimetic scaffolds.

20.
Cancers (Basel) ; 14(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36139700

RESUMO

In cancer, the complex interplay between tumor cells and the tumor microenvironment results in the modulation of signaling processes. By assessing the expression of a multitude of proteins and protein variants in cancer tissue, wide-ranging information on signaling pathway activation and the status of the immunological landscape is obtainable and may provide viable information on the treatment response. Archived breast cancer tissues from a cohort of 84 patients (no adjuvant therapy) were analyzed by high-throughput Western blotting, and the expression of 150 proteins covering central cancer pathways and immune cell markers was examined. By assessing CD8α, CD11c, CD16 and CD68 expression, immune cell infiltration was determined and revealed a strong correlation between event-free patient survival and the infiltration of immune cells. The presence of tumor-infiltrating lymphocytes was linked to the pronounced activation of the Jak/Stat signaling pathway and apoptotic processes. The elevated phosphorylation of PPARγ (pS112) in non-immune-infiltrated tumors suggests a novel immune evasion mechanism in breast cancer characterized by increased PPARγ phosphorylation. Multiplexed immune cell marker assessment and the protein profiling of tumor tissue provide functional signaling data facilitating breast cancer patient stratification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...